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ABSTRACT

The numerical integration of the equations of motion for missiles

and shell is a frequently occurring computational problem in government

laboratories and in the aerospace industry. Because of the repetitive

nature of such computations and thecontinuing requirement, it is desir-

able to make these computations as efficiently as possible in order to

minimize the computer time spent in their solution. The cost in terms

of time required to solve representative problems to a specified accuracy

is a measure of the relative efficiency of numerical integration methods

and can be determined only by experimentation. This report describes

the results of such an experimental study and finds that the l•utta-Merson

procedure with automatic and continuous interval adjustment is far

superior to the predictor-corrector techniques.
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INTRODUCTION

Prior to the study culminating in this report the Ballistic Research

Laboratories Electronic Scientific Computer (BRLESC) had available in

its compiler two subroutines for the numerical integration of a system

of ordinary differential equations. These subroutines were RKG and

RKGMA. The RKG routine is the Runge-Kutta-Gill procedure as described

by Romanelli3 *. RKGMA is a procedure using the Adams fifth order

predictor formula with no subsequent correction. The procedure uses the

RKG routine as a starter, hence its name, Runge-Kutta-Gill-Modified-

Adams**. The reason for using only the predictor cycle in RKGMA as

opposed to the classical predictor-corrector methods was that the RKGMA

method requires only one derivative evaluation per step and hence runs

twice as fast as the conventional method when both methods use the same

step size. This allows a step size of h/2 for the same cost as the con-

ventional method using step size h and results in a technique with greater

accuracy. This observation was "verified" in a study performed in the

Computing Laboratory and led to the incorporation of RKGMA into the

BRLESC compiler. Of course all this neglects the very important consid-

eration of stability and in fact Hamming3 shows that for a simple predictor

formula, such an application can be unstable.

The use of RKGMA in the integration cf trajectories nevertheless

produced a very accurate method and was initially thought to be more

*Superscript numbers denote references which may be found on page 37.

**Hildebrand2 refers to the Adams fifth order predictor-corrector

method with iteration as the modified Adam's method. To avoid possible

confusion this distinction is noted.
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economical than the RKG method. This conclusion was derived as

follows: In the absence of any practical estimate of the truncation error

in thq.RKG scheme, it was traditionally used with a constant step size

which from experience one knew was adequate and "safe". When RKGMA

became available, it was natural to attempt to solve trajectory problems

with the same step size traditionally used with the RKG routire. The

result was that the method was stable for the particular applications

and yielded a method almost four times more economical than RRKG.

Such a comparison is not complete, however, in that one should also

consider accuracy and stability. Subsequent experiments designed to

consider these factors led to the conclusion that for trajectory compu-

tations RKG was more efficient than RKGMA. These results were

attributed to the fact that to maintain stability with RKGMA one had to

use a smaller step size which more than offset its four to one advantage

with regard to derivative evaluations.

A method for improving the stability properties of a procedure

such as RKGMA arose from the findings of Hull and Creemer4 who

reported on a study of the efficiency of predictor-corrector procedures.

They found that a method with only one evaluation of the derivative con-

sistently seemed the most efficient type of predictor-corrector technique.

This technique maintained the advantage of RKGMA with respect to deriva-

tive evaluations, but by modifying the cycling process improved the

stability properties. This scheme allows one to apply both the predictor

and corrector for the price of one evaluation or the application of the

predictor and then the corrector step twice for the cost of two evaluations.

In addition, this procedure even with only one evaluation provides an

estimate of the truncation error. A study of this scheme, applied to

the Adams formulas became the basis of the BRL study. An additional

objective of this investigation was to study the formulas of Crane and

Klopfensteins, who derived a predictor formula which when used with
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the Adams fifth order corrector yielded a method with increased range

of stability. During the study the Kutta-Merson algorithm came to the

attention of the author and was added to the study because of its favor-

able stability properties and because it provides a computable estimate

of the truncation error.

The studies described herein were by no means exhaustive; i. e.,

only fifth order methods were examined, but seem sufficiently important

to warrant reporting since few such studies on practical dynamic problems

are found in the literature.

The trajectory models used in the study were actual models currently

being used by the Ballistic Research Laboratories in computing Firing

Tables for various weapon systems. Although the results of this study

may to some extent be affected by programming pecularities and the use

of a particular computer it is felt that the results are fairly representative

of what might be expected in general.

General Discussion

Many different schemes exist for the numerical solution of

ordinary differential equations. Because of the widespread need for

numerical integration, most computing facilities have as a standard

routine, some method of numerical integration which can be utilized as

a package by programmers. This leads to a more efficient operation

and avoids the occurrence of redundant programming effort. Because

of the general use of such a routine or package, it is highly desirable

that it be flexible and efficient. The flexibility is measured by the

relative ease with which programmers can call for the routine and by

the nunber of tasks to which the routine can be applied with confidence.

The efficiency is best measured by Lhe computing time required to

solve representative problems to a given degree of accuracy.
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The most efficient routines seem to be those which provide an

estimate of the truncation error and which adjust the integration interval

as the irntegration proceeds. When a provision for interval adjustment is

lacking, the programmer is forced to be conservative in his choice of

step size and may even have to solve the same problem several times

with different intervals to assure himself that the procedure is stable

for the particular problem and the chosen interval.

The truncation error is a measure of the error incurred at a given

step and cannot be used to determine precisely the accumlated error

resulting after the integration has proceeded for many steps. Despite

this, the use of truncation error as a guide to choosing the integration

interval has proven quite successful in creating efficient routines.

The computation of trajectories is a frequently occurring problem

which requires numerical integration. The Firing Tables Branch of

the Computing Laboratory, for example, in- 1965 used over 900 hours

of machine time, a significant fraction of which was used on the compu-

tation of trajectories. These computations usually allow varying intervals

as the problem proceeds to attain a fixed truncation error. For this

reason a process which can estimate the truncation error and adjust the

step size continuously and automatically can be much more efficient than

a procedure which does not. The design of such a procedure for general

trajectory computations was the major objective of this study. An addi-

tional objective was the creation of a standard subroutine which could be

used by programmers in general on a variety of problems. Among the

integration procedures.which have the most widespread use are the two

basic categories:

(1) Runge Kutta methods

(2) Predictor-corrector methods

10



The general features which are discussed extensively in the literature

pertain mostly to the following six areas:

(1) Storage requirement

(2) Accuracy

(3) Stability

(4) Ease of starting

(5) Number of derivative evaluations per step

(6) Estimation of truncation error

The Runge Kutta method or the Gill modification evaluated against

these features has become almost universally adopted as the best pro-

cedure to have as a general purpose standard package. The method is

very accurate, has probably the best stability properties of the methods

used extensively, is self starting, and the Gill modification of the method

requires very little storage of data. The method suffers from the dis-

advantage of requiring four derivative evaluations to advance the compu-

tation one mesh interval. As generally used the method also suffers

from the additional disadvantage of not providing an estimate of the trun-

cation error unless used in a multistep mode 1 ; i.e., the same step is

done twice, once with an interval of h and then followed by two steps of

h/2. This method has not found widespread use mainly due to the

increased cost of the multistep application. The computable estimates

of truncation error found by Merson6 and more recently by Scraton7

seem to largely eliminate this problem however.

The predictor-corrector methods are generally considered to be

the most efficient since in the conventional application only two deriva-

tive evaluations are required and because of the ready availability of a

computable estimate of the truncation error. While this may be gener-

ally true, there exists a great deal of. evidence (this study for example)

indicating that for some classes of problems the Runge-Kutta methods

are the most economical if used with a technique for interval adjustment.
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Despite the extensive body of literature that exists on the subject,

no definitive conclusions can be made when attempting to choose a method.

Those studies that are found in the literature usually are done for proto-

type differential equations and it is not generally valid to extend the find-

ings from such studies to the more general dynamic problems that are

of greatest interest. Many problems are such however that the most

expeditious solution is to use a method available at one's computing

facility; i. e., even though the particular method may be very inefficient

for a given problem, the fact that it has already been programmed and

checked out offsets other considerations. The problem may be a "one-shot"

type which can be solved for several integration intervals without incurring

much total cost in computation time. The trajectory problem is one,

however, which is repetitive, i. e., after a program is written it may be

used to compute many trajectories for a given projectile or missile and

quite often is used for different projectiles and missiles. In this instance

one is concerned with programs which are used almost daily for a period

of years and any economies, however small, eventually produce large

accumulative savings.

Several techniques are commonly used for choosing the mesh size

in this type of problem. One method is merely to use a constant mesh

of a magnitude which from experience one has confidence will work.

Another technique is to establish some empirical rule by experimentation

which keys on the magnitude of a certain variable and adjusts the step

size as a function of this variable. The third method is the one mentioned

previously; i.e., the integration procedure itself estimates the truncation

error and adjusts the step size to keep the truncation error within pre-

scribed bounds. This method requires little knowledge of the problem

being solved and therefore is more general and flexible. This last approach

was the one pursued in the study to be described.
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TRAJECTORY PROBLEM

The trajectory problem can be divided into three broad cases.

A Six degrees of freedom

B Five degrees of freedom

C Three degrees of freedom

The six degrees of freedom problem in its most general form is a

system of 12 first order coupled nonlinear differential equations. Six

of these equations (3 second order D. E.) govern the motion of the

center of gravity and the remaining six govern the attitude of the body.

The solutions of the equations governing the attitude and angular rates

are oscillatory in nature, the oscillations usually having small periods

in the independent variable, time. These small periods require small

mesh size to trace the oscillation and to maintain stability. This

requirement, coupled with the usually large number of total steps

needed to take the trajectory to the terminal point creates significantly

long computation times.

The major difference between six degree of freedom trajectory

problems and five degree* problems is the choice of coordinate systems

specifying the orientation of the body axes. For spinning missiles

or shell tne computational problems can become extremely difficult

when the kinematics are posed in the six degree scheme. The attitude

parameters, for example, oscillate sinusoidally with a frequency equal

to the spin rate. This spin rate can often be much higher than the pitch

and yaw frequencies and where practical the problem should be restated

and solved using five degree kinematics. Both of these simulations

usually include additional differential equations (in addition to a basic

1Z or 11) for representing mass changes, guidance and control etc.

*Five degree systems have also been called "fixed plane systems"I

and as the "Frick slip frame" 9 .
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These problems are usually characterized by very complicated deriva-

tive sequences. i.e., the time required to evaluate the derivative is

usually large in comparison to the time required to execute the oper-

ations pertaining to the integration itself.

The three degree of freedom* problem is a system of six first order

ordinary differential equations and represents an approximation to the

representations described above. In this simulation only the motion of

the center of gravity is represented, and since the oscillations are not

present this problem is not nearly so demanding of computation time.

The fact that very large numbers of these trajectories are computed,

however, creates a need for economizing the solution as much ais

possible.

METHODS STUDIED

Altogether, eight methods were studied as applied to trajectories,

and an additional method (after Scraton) was studied on a prototype

system of equations. Six of these methods applied to trajectories were

predictor-corrector type schemes and among these six were some which

differed only in the sequencing of the successive application of the pre-

dictor and the corrector step; the other two methods were the RKG

method and the Kutta-Merson procedure.

*Recent work done by the Firing Tables Branch of the Computing

Laboratory has been successful in superimposing upon the three degree

of freedom trajectory for spinning shell an estimate of the "yaw of repose".

This simulation approaches the fidelity of the six and five degree simu-

lation at a cost not much greater than the usual three degree of freedom

simulation. This model is described by Lieske and Reiter °
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DESCRIPTION OF THE ALGORITHMS

The differential equation is assumed to be the form

Y' = f (x, Y)

and the extension to a system is done in the usual manner. The general

formulas for the predictor-corrector scheme are as follows:

(p)

Yn+ = a] Y +bj Y + c1  Y + d1 Y +h(el f +f fnln n-i n-2 Yn-3 n fn-i

+ gi fn- 2 + k, fn- 3 ) (1)

(c)

Yn+l = a 2 Yn +b2 Yn-1 + C2 Yn-2 + h (e 2 fn+ + f2 fn + 92 fn-1

+ k2 fn_2) (2)

The superscripts (p) and (c) denote predicted and corrected values
mrespectively. After Hull and Creemer we adopt the notation P (EC)

to denote the mode of application of a pair of formulas. P represents

the prediction step, E the evaluation of derivatives and C the corrector

step. m is the number of times the cycle (EC) is performed. In this

study two values of m were utilized, (m = 1, 2). The RKGMA procedure

as described earlier is represented by the cycle PE but was not studied

in this investigation because of the previous observations cited and it

provides no estimate of the truncation error. The coefficients for the

Adam's formulas in equations (1) and (2) can be found in References 2

and 3 and the Crane-Klopfenstein coefficients are found in Reference 5.
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The Kutta-Merson formulas are listed below:

KUTTA-MERSON FORMULAS

Y, = YO + 1/3hf(xo, Yo)

Y2 = Yo + 1/6hf(xo, Yo) + 1/6hf(xo + 1/3h, YI)

Y3 = Yo + 1/8hf(xo, Yo) + 3/8hf(xo +1/3h, Y 2 )

Y4 = Yo + 11/2 hf (xo , Yo)- 3/2 hf (xo + 1/3h, Y2 +Zhf (xo+1/2h, Y 3 )

Ys = Yo + 1/6 h f (xo, Yo) + 2/3 h f (xo + 1/2h, Y 3 ) + 1/6hf(xo+h, Y 4 )

The procedure provides two estimates, of the solution at the end

of the step, namely Y 4 and Y 5 . If the differential equation is of the

form Y = f(x, Y) = ax+bY+c

the truncation error in Y 4 is 1/120 hr Y&and in Y 5 is 1/720 h5 y(6).

The use of this error estimate for systems of equations, none of which

have the above form, is merely a computational expediency which seems

to work in most instancer and should accordingly be used with caution.

LISTING OF METHODS

Code Method Formulas

1 RKG Runge-Kutta-Gill

2 PEC Adams-Bashforth Predictor

3 PECE Adams-Bashforth Predictor
Adams-Moulton Corrector

4 PECEC Adams-Bashforth Predictor
Adams-Moulton Corrector

5 PEC Crane-Klopfenstein Predictor

6 PECE Crane-Klopfenstein Predictor
Adams-Moulton Corrector

7 PECEC Crane-Klopfenstein Predictor
Adams-Moulton Corrector

8 KM Kutta-Merson

16



ADJUSTMENT OF STEP SIZE

The utilization of truncation error to adjust step size with the

predictor-corrector methods is based on the considerations that follow.

See Reference 2. If the true solution at the point n+1 is denoted as

Y n+ and all the solution and derivative values occurring in the right

hand members of (3) and (4) were known exactly, then

(p)
Y =Y + E, h6  (3)'1

n+l Y n+l Y(0.)/5"(3)
(c) (p)

Yn (c)1 + E2 hs YW) /. + kh (f -f(c) ) (4)
n+1I n+ I~ n+lI n+l1

k is equal to 3/8 in the Adams method and • I and G both lie between

Xn- 3 and xn+1 . The usual procedure is to assume that the term

(c) (p)
Q =k h (f -f ) is equal to zero, a condition which holds only

n+l n+1

after iteration. Since the iteration requires going through the derivative

evaluations each cycle it is generally more efficient to proceed with

smaller h and no iteration. The term Q is assumed to be negligible.

To get a computable* estimate of the truncation error after the comple-

tion of the corrector step the usual assumption is that h is sufficiently

small to equate -- ')s|( ) and Y(Pa ). This leads to the equation

hs y(5(r) E (Y (c) (p)--- (n+) (5)
5! (E -E 2  n I n n+l

The error in the corrector step is then approximated by

s E(Y (+c) Y (p)) (6)
T • (El - E 2 ) n+ I n+ (

*The ability to explicitly evaluate YUSJ (t) is not practical in most

cases and hence is not considered to be computable.
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The Kuita-Merson procedure is not really a predictor-corrector

method but the sequencing of operations is quite similar, i.e., the two

estimates of the solution at n+l are obtained and the difference is

utilized in estimating the truncation error. The following table lists

the quantity E2/(El-E2) for the various methods.

Method E2/(EI-E2) Truncation Error

Adams 1/4 19/720 hr' YtS)(ý)

Crane-Klopfenstein 1/16 19/720 h 5 y6s)

Kutta-Merson 1/5 1/720 hs5 Y(G)

The classical approach to step size adjustment is to halve or

double as the situation warrants. For example, if T denotes the

estimated truncation error then the most common techniques attempt

to bound T in the interval

C !9TT!9d-- double (7)
d h h-- halve

where Ch denotes the critical value at which to halve and Cd the value

at which to double. The motivation for doubling and halving arises from

the problems caused by restarting. For instance the problem of re-

starting when doubling the interval. can be solved by storing additional

past values and by selecting the appropriate values for the new step

size 2h. When halving one can use interpolation formulas to approximate

the required data for the new interval h/2. Such formulas can be found

in Reference 11. The routines utilized in this study were started by the

RKG procedure and therefore this problem of restarting was not present.

Accordingly, the step size was not restricted to halving and doubling but

was chosen so as to achieve a fixed truncation error. The step size

in the predictor-corrector scheme cannot be varied continuously because

such an application would mean that most of the computing time would be

spent in the starting phase. For the predictor-corrector scheme the

18



step size was changed only when T exceeded the bounds of (8)

i -- increase
2 d (8)

d-- decrease

When T > Cd the step was discarded and a decreased step size was

computed. When T : C. for five steps, then h was increased. The new size
1

was always chosen so as to move T back to the middle of the interval, (8).

The KM process is self starting and hence the step size was adjusted

continuously. The new step size is determined from the following consid-

eration. The quantity y()(0() is assumed to vary slowly and is assumed

constant fromr one step to the next. The old step size is denoted as

ho and the new as h . T is the maximum truncation error occurringn mn

for those equations in the system. h is selected to make the truncation
n

error equal to Td7 the desired truncation error. T and T are repre-
m d

sented by
I

"Tm = E2 h 0 r y(5)(•) (9)

"Td = E 2 h h Y(-J() (10) 7/

Solving (9) and (10) for hn

h = ho(Td/T )n dm(11)

Since this is only an estimate of the truncation error it is expected that at

the end of a step T will exceed Td as often as it is less than Td. A

criterion has to be established for rejecting and repeating a step when
T > T d To avoid excessive repeating of steps, (11) is modified as

m d
follows: 1'5hn = ho (fTd/Tm) 

(12)

f should be smaller than 1 and in this study a value of 0. 1 was used.
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SETTING THE TRUNCATION ERROR

In the application to trajectories the control on the step size

should take into consideration the following factors: (1) the desired end

result is a solution giving the position of the center of gravity with an

error no greater than several meters, (2) the accuracy* of the para-

meters governing attitude is not critical since the attitude merely pro-

duces a perturbation or second order effect on the motion of the center

of gravity. Hence the consideration here is to set the truncation error

at a value which will insure stability; i.e., high accuracy is not too

important. For this reason the algorithms which were coded for the

various methods were designed so as to have individual controls on each

equation. This was executed by having the capability of specifying a Td

for each equation. In the six and five-degree study the controls were

effective only on P, Q, R, the angular rates and 0, e, • the Euler angles.

See appendix.

DISCUSSION OF RESULTS

Six and Five Degrees of Freedom

The results shown in Table 1 are representative of the relative

economy and accuracy of the eight integration methods for the six and

five degree problems. Trajectory 1 is a missile trajectory containing

a six degree phase and a five degree phase. The running time spent

in the boost phase (six degrees) is approximately the difference in the

running time between trajectory I and trajectory II. Trajectory II

contains only a five degree phase. Integration type 1 was the RKG method

with fixed step size and was used as the standard of comparison. For

*In the absence of a true solution the accuracy can be defined by comparing

results against a standard solution. If a given problem is integrated using

a particular method for several step sizes, then for a region of h the

solution will not vary appreciably. In this region one can choose the

standard value.

20



integration type I the integration interval was held constant at 0. 01

during the six degree boost phase and at 0. 1 during the five degree phase

thereafter. The results could be summarized as follows. Of the pre-

dictor-corrector methods listed the results are not very conclusive

except to indicate that a method using two evaluations is probably better

than a method using only one evaluation. This conclusion is drawn from

the observation that the running time and the accuracy are not signifi-

cantly different and two evaluations would generally be better, due to

considerations of safety arising from greater stability. No further

attempt was made to choose between the various predictor-corrector

methods because of the fact that KM by far seemed the best. This is

especially true when the accuracy requirement is made less stringent.
-3

For truncation errors of 10 , KM is almost twice as efficient as any

predictor-corrector method.

Figure 1 shows the step size history along trajectory II, using the

KM procedure and the Adams predictor-corrector method, PECE. In

both instances the truncation error was set to 10 -3. The data for KM

is plotted only at intervals of five seconds.
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TABLE I

TRAJECTORY I

SIX AND FIVE DEGREES

INTEGRATION TRUNCATION TIME OF DEFLECTION RANGE COMPUTATION
TYPE ERROR FLIGHT ERROR ERROR ERROR TIME

SECONDS METERS METERS MIN

1 - -4 4.16

2 10"4 .0001 .1 .1 2.03
3 -. 0009 1.0 .2 1.85
4 .0008 .4 .1 2.01
5 ** .0001 .0 .1 2.08

6 -.0010 1.1 .2 2.04
7 .0009 .9 -.1 2.01
8 .0001 .0 .0 1.76

1 - -3 - - - 4.16

2 10 .0034 2.9 2.1 1.77
3 6 -,0049 3.7 1.8 1.49
4 .0032 .4 .2 1.71
5 .0014 2.9 2.8 1.83
6 -. 0044 4.0 1.7 1.72
7 *6 .0014 1.1. .6 1.64
8 -. 0013 .5 .2 .93

SIX DEGREES
-4

8 10-3 -. 0003 3.4 .0 5.78
8 10 -. 0249 22.5 -2.2 3.28

THE TRAJECTORY MODEL ON WHICH THIS DATA-WAS COLLECTED WAS THAT
OF THE LANCE MISSILE SYSTEM. TRAJECTORY It WHEN USING THE RKG
INTEGRATION AND SIX DEGREES OF FREEDOM WITH A CONSTANT STEP SIZE
OF .025 SECONDS REQUIRED APPROXIMATELY 15 MINUTES SOLUTION TIME.

Z?



TABLE I
(CONT.)

TRAJECTORY II

FIVE DEGREES

INTEGRATION TRUNCATION TIME OF DEFLECTION RANGE COMPUTATION
TYPE ERROR FLIGHT ERROR ERROR ERROR TIME

SECONDS METERS METERS MIN'

I - -4 - - - 2.84
2 10 .0001 .2 .1 1.57
3 .0009 1.1 .2 1.34
4 .0008 .5 .1 1,50
5 -. 0001 .1 .1 1.59
6 -. 0010 1.2 .2 1.42
7 .0009 ,9 -,'1.40

8 .0000 .1 .0 1.13

-3 - - 2.84
2 10 .0041 3.3 2.1 1.46
3 -. 0045 3.9 1.8 1.07
4 .0031 .4 .2 1.27
5 .0022 3.0 3.5 1.53
6 -. 0043 4.0 1.7 1.33
7 .0014 .2 .6 1.33
5 .0016 .5 ,3 i .72

SIX DEGREES
7--4

S10.3 -. 0004 3.6 .0 5.17
8 f 1 -. 0269 21.8 2.4 2.96
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Three Degrees

As pointed out previously, the most critical running time problem

occurs in the five and six degree trajectory models. Accordingly the

emphasis was placed on these problems initially and after KM was

selected as the most efficient method, it was applied to the three degree

problem. The hope was that Kutta-Merson would prove to be at least as

efficient as previously used methods for three degrees thus allowing the

use of a single method for all trajectory programs. The equations

for the model used in this study are found in Reference IQt In this study

KM was compared against a method currently used in the Firing Tables

Branch for the mass production of all firing tables for cannon artillery.

This method is not widely used elsewhere, but was tailored to this parti-

cular application. The method is a self starting predictor-corrector

method. The three degree equations are of the form

X = F (X, X) where
Oslo -4

X is the acceleration vector, X the velocity and X is the position vector.

The integration algorithm is as follows.

X X 0 + h X0

Xp x0 + h X0

X ( X hXp
Xp 0

X = Xp -h/2 (X0- P + h2/12 (X - X:'c p -0 p 0

X =X h/(-Xp)

-4" -4 -4 -4

X = F(Xco Xc')
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The quantities with the subscript 0 denote values at the beginning of a step.

The subscript p denotes predicted values and c denotes corrected values.

The predictor formula is that of Euler and has a truncation error of order

h . The corrector formula for X is of-order h and that of X of order
c c

h . The fact that the predictor and corrector formulas for X are of

different order precludes the estimation of truncation error by the usual

methods. Previous techniques for adjusting step size with this method

were based on an empirical formula which expressed h as a function of

Mach number. Each weapon had its own function, a typical one being as

follows:

h = .5 0.0 • M < .764

h = .25 0.764 S M < .936

h = .25 0.936 < M < .960

h = .0625. 0.960 s M < .984

h = .0625 0.984 5 M < 1.016

h = .125 1.016 5 M < 1.25

h = .25 1.25 5 M < 4.0

M = Mach Number

The function above was used in the three degree study for the 175mm Gun

and a similar function was used for the 155mm Gun. The integration

technique described above with step size adjusted as a function of Mach

number will be referred to as method A.

An alternative procedure, which has been used on some problems

in the Computing Laboratory, is to use the formula h = C I X / X I

to continually adjust h. The constant C is empirical and is determined

by experiment. This formula and the integration technique described

above will be referred to as method B.

The three degree study consisted of three methods. The first method

was the Kutta-Merson procedure, the second was method A and the third

was method B. Initially, experiments were conducted to determine control

values for the truncation error which would consistently yield good
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accuracy without sacrificing excessive computation time. The result of

these experiments indicated that a good choice of truncation error with

the Kutta Merson procedure was 0. 002 on the three differential equations

associated with the velocity and 0. 1 on the three equations associated

with the position. For Method B a value of C = 0. 02 was selected. The

three methods were compared on two weapons, the 175mm Gun and the

155mm Gun. Three velocity levels and three quadrant elevations were

studied for a total of 18 trajectories for each of the three methods. Each

trajectory was run 50 times so that a reliable estimate of the computation

time would be obtained. The results are listed in Tables 2 and 3 and can

be summarized as follows:

For the 155mm Gun, Method A seems to be as fast as Kutta-Merson

or Method B but the accuracy is not acceptable. To reduce the error

using Method A would require longer solution time. This is evidenced

by the data in Table 3 for the 1755mm Gun where the accuracy for Method A

is acceptable but the solution time is not competitive with respect to the

Kutta-Merson procedure or Method B. In comparing Method B against

Kutta-Merson it seems that no significant difference in accuracy or speed

is apparent.

The results of this study indicate that Kutta-Merson is a better

procedure for the three degree computations than the technique presently

used; i. e., the adjustment of h as a function of Mach number, and at

least as efficient and accurate as Method B described earlier. Since

it is desirable to standardize on a method for various problems within

an organization, Kutta-Merson by virtue of being more efficient for six

degrees and at least as efficient for three degrees would seemingly be the

best method. Another important point at least in the BRL is the following:

In some rocket trajectories the simulation is done in stages, five degrees

for the first phase, (boost) and three degrees for the second phase (coast).
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Kutta-Merson can handle both stages with equal ease.

Figure 2 is a trace of the step size variation as a function of the

time along the trajectory for the 155mm Gun. This trajectory had an

elevation of 1124 mils and a muzzle velocity of 561 meters/sec. The

truncation error was set at 0.01 on all six differential equations of the

three degree system.
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TABLE 2

THREE DEGREES

WEAPON MUZZLE QUAD COMP TIME TIME OF TIME OF RANGE RANGE DEFL DEFL
VEL ELEV FOR FLIGHT FLIGHT ERROR ERROR

50 TRAJ ERROR

M/S MILS MIN SECONDS SECONDS M. M M *M

KUTTA-MERSON

155 280.0 200 .38 11.015 .000 2870.05 .01 11.24 .04
155 i80.0 800 .59 38.557 .001 6684.86 - .09 144.31 .67
155 280.0 1200 1.05 50.116 - .001 4541.49 - .95 270.92 .87
155 378.0 200 .69 13.965 .000 4435.45 .03 21.40 .06
155 378.0 800 .99 48.002 .001 10016.63 - .07 237.25 1.02
155 378.0 1200 1.52 62.594 .000 6916.38 - 1.03 441.10 1.25
155 684.3 200 .79 22.797 0001 9764.53 .29 75.98 .91
155 684.3 800 1.55 68.100 .001 18020.35 - .11 635.09 3.04
155 684.3 1200 2.73 90.005 .000 12530.35 - 3.07 1093.87 2.74

TOTAL=10.29

METHOD A

155 280.0 200 .22 11.010 - .004 2868.74 - 1.24 I11.01 - .10
155 280.0 800 .49 38.551 - .005 6683.93 - 1.01 143.72 .26
155 280.0 1200 .60 50.112 - .005 4539.97 - 2.37 270.96 .98
155 378.0 200 .83 13.964 - .001 4435.17 - .15 21.05 - .17
155 378.0 800 .91 47.998 - .003 10016.33 - .42 236.41 .39
155 378.0 1200 1.05 62.592 - .002 6915.09 - 2.26 441.18 1.40
155 684.3 200 i.00 22.793 - .002 9762.55 - 1.57 75.36 .37
155 684.3 800 3.11 68.097 - .007 18019.66 - .76 633.95 1.88
155 684.3 1200 2.94 90.005 .000 12520.28 -12.35 1095.25 3.95

TOTAL=11.15

METHOD 8

155 280.0 200 .28 11.012 - .002 2869.321- .66 10.53 - .58
155 2h0.0 800 1.00 38.555 - .001 6684.79 - .15 142.56 - .90
155 280.0 1200 1,78 50.116 - .001 4542.19 - .15 269.42 - .56
155 378.0 200 .32 13.961 - o004 4433o93 - 1.39 20.73 - .49
155 378.0 800 1.09 48.000 - .001 10016.77 .02 235.49 .53
155 378.0 1200 1.84 62.592 - .002 6916.90 - .45 439.60 - .18
155 684.3 200 .58 22.792 - .003 9762.33 - 1.79 74.85 - .14
155 684.3 800 1.34 68.095 - .003 18019.48 - .94 633.19 1.12
155 684.3 1200 2.05 89.998 - .007 12529.27 - 3.36 1092.60 1.30

TOTAL=10.28
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TABLE 3

THREE DEGREES

WEAPON MUZZLE QUAD COMP TIME TIME OF TIME OF RANGE RANGE DEFR DEFL
VEL ELEV FOR FLIGHT FLI-HT ERROR ERROR

50 TRAJ ERR.

.MIS MILS MIN SECONDS SECONDS M M M 14

KUTTA-MERSON"

175 510.5 200 .70 18.643 .001 7248.86 .35 25.76 ,43

175 510.5 800 1.27 59.722 .000 15186.80 .05 194.911. .57
175 510.5 1200 1.60 75.540 - .001 10999.15 .51 388.68 - .85
175 704.1 20", .74 24.788 .002 11852.43 .88 64.98 1.26
175 704.1 S00 1.53 76.577 .002 22212.09 - .05 410.69 3.34
175 704.1 1200 2.00 100.920 .001 16738.79 .86 697.62 .99
175 914.4 200 .82 30.897 .004 17243.61 1.43 122.26 2.25
175 914.4 800 1.66 96.351 .007 32223.58 .31 882.43 -1.50
175 914.4 1200 2.13 127.643 .000 26104.62 1.99 1291.52 3.86

TOTAL=12.45

METHOD A

175 510.5 200 .90 18.640 - .002 7247.68 - .65 25.04 - .12
175 510.5 800 1.81 59.718 - .003 15185.48 - 1.24 193.56 - .12
175 510.5 1200 1.98 78.534 - .007 10997.56 - 1.16 387.98 -1.22
175 704.1 200 .81 24.783 - .002 11850.24 - 1.12 63.77 .24
175 704.1 800 3.38 76.572 - .003 22210.82 - 1.28 407.95 .85
175 704.1 1200 2.80 100.913 - .006 16737.49 - .52 695.63 - .70
175 914.4 200 .89 30.892 - .001 17240.73 - 1.29 120.68 .84
175 914.4 800 3.43 96.342 - .003 32220.39 - 2.77 876.99 3.02
175 914.4 1200 3.18 127.632 - .010 26104.50 1.63 1287.88 .46

TOTAL=19.18

METHOD B

175 510.5 200 .41 18.636 - .006 7246.09 - 2.24 24e19 - .97
175 510.5 800 1.16 59.717 - .004 15186.23 - .49 192.26 -1.71
175 510.5 1200 1.87 78.533 - .008 10998.49 - .23 387.82 -1.38
175 704.1 200 .54 24.780 - .005 11848.74 - 2.62 62.58 - .95
175 704.1 800 1.30 76.569 - .006 22210.49 - 1.61 406.82 - .28
175 704.1 1200 1.94 100.904 - .015 16737.25 - .76 695.73 - .60
175 914.4 200 .65 30.888 - .005 17239.26 - 2.76 119.38 - .46
175 914.4 800 1.41 96.335 - .010 32219.31 - 3.85 877.87 3.90
175 914.4 1200 2.01 127.617 - .025 26100.67 - 2.20 1288.65 1.23

TOTAL=11.29
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EFFICIENCY OF THE METHODS

Merson6 observed that for dynamic problems, one could use with

the Runge-Kutta method, an integration interval perhaps seven times

larger than with the Milne predictor. This general observation seems to

be borne out by this study.

The results are somewhat surprising in that it is common to

attribute to the predictor-corrector methods a greater efficiency than

the Runge-Kutta methods. One usually assumes that when the order of

two methods is the same and one has say two evaluations in one method

and four in the other then the method with two evaluations on the surface

is twice as efficient as the other. Hence one is inclined to attribute the

contrary results of this study to considerations of stability. This is

probably true but two other factors seem important.

The first of these is that to avoid the cost of restarting with the

predictor-corrector methods, one has to employ the bounding conditions

specified in equation (8). This means that one is not always using the

largest step size consistent with the desired truncation error as, e. g.,

one uses with the KM procedure.

The second factor is accuracy itself. If RKGMA, the conventional

Adams method, and KM produced the same accuracy for a given step

size then one might choose to assign to each method a theoretical cost

index as shown in the second column of Table 3.

TABLE 3

Method Cost Index Cost Accuracy Index

RKGMA 1.0 1.0

Adams 2.0 1.2

Kutta-Merson 5.0 1.7
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Since the methods do not yield the same accuracy (despite all being

fifth order) for the same step size, it is more realistic to define a cost-

accuracy index. A cost-accuracy index can be defined as the quantity

N/R where N is the number of derivative evaluations per step and R is a

step size ratio required to achieve a fixed truncation error. This ratio

can best be found by comparing methods against a standard method. For

the purpose of comparison let the RKGMA method be the standard with a

cost accuracy index of 1. 0. KM has an N of 5 and can allow a step size

1/5
of (251) 1/% 3 times larger than RKGMA to achieve the same truncation

error. This ratio is obtained by equating the truncation error of the

two methods and solving for the step size ratio. The cost-accuracy

index for the three methods is shown in the third column of Table 3.

Even with the more realistic comparison of a cost-accuracy index

the Kutta-Merson procedure shows up as the least efficient method. The

contrary results of this study show that for dynamic problems, such as

those studied here, efficiency can only be determined by experimentation.

The cost-accuracy index, however, suggests that the additional

evaluations do more than contribute to stability, they also increase

accuracy, and therefore efficiency. An additional factor which should

be noted is the following: In representing the propulsion and aerodynamic

characteristics of a missile, one is usually faced with the problem of

approximating the date by some curve fitting technique so that it can be

utilized in the trajectory problem. Because of the severe nonlinearities

of the data and because of practical considerations it is customary to

approximate the data by piecewise polynomials. At the juncture of these

polynomials the derivatives are not continuous and hence one of the basic

assumptions of any integration technique, i.e., the continuity of higher

derivatives, is violated. Intuitively it would seem that an integration

method which uses information only within one interval (Runge-Kutta)
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as compared to one which uses information over several intervals

(predictor-corrector) would be less affected by this problem. In this

studyv, the data in the six and five degree problems were represented by

piecewise linear segments. In the three degree problem piecewise 4th

degree polynomials were used.

Since the completion of this study the author has become aware of

work done by Scraton 7 who obtains an estimate of the truncation error

for the Runge-Kutta method when making the same assumptions as does

Merson.

This assumption is that the differential equation is the form

Y' = ax + bY + c (13)

where a, b, and c are constants.

In addition Scraton has derived Runge-Kutta type formulas which require

five evaluations and which have a computable estimate of the truncation

error not based on the above assumptions, i. e., they have general

validity. This recent work raises the question as to whether the Runge-

Kutta procedure with Scraton's truncation error estimate might not be

a better method than the KM procedure since it requires only four

derivative evaluations. Furthermore, might not Scraton's new formulas

be more attractive because of their general validity. Mr. Glenn Beck of

the Computing Laboratory has observed that the KM procedure as used

with a prototype differential equation yields greater accuracy than does

RK or Scraton's method and the difference in accuracy compensates for

the fifth evaluation. The belief is e.g.,* see Fox1 2 , that when the

system of equations does not follow the form (13), that Merson's

truncation error estimate is an overestimate, i. e., it is safe.
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CONCLUSIONS

In five and six degree of freedom problems the Kutta-Merson

integration procedure as compared against the fifth order predictor-

corrector techniques seems to be twice as economical in terms of

computation time when applied in a manner which allows continuous

interval adjustment. When compared against the RKG procedure with

constant step size, the data for this report indicate savings of almost

4 to 1. In most cases the ratio would be higher because one usually

cannot justify an extensive stability study to find the largest value of

h required to yield the desired accuracy and maintain stability.

For three degree problems the Kutta-Merson procedure seems

to be more efficient than presently used techniques and at least as

efficient as a proposed modification.

The adoption of Kutta-Merson as the standard subroutine for all

trajectory computations can result in significant savings of computation

time in addition to the benefits gained from the standardization. In

addition it has already proved quite useful on a number of other problems.
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AUTHOR'S NOTE

This study has resulted in the Kutta-Merson nrocedure being coded

as an integration package which is now part of the 13RLESC compiler. The

subroutine description can be obtained by contacting the Computation

Branch of the Computing Laboratory.
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APPENDIX

EQUATIONS OF MOTION

List of Symbols

X 0 , Y 0 , ZO Position in inertial space
•-4 -4 .-4

F , F F Propulsion forces about body axes x, y, z
px py, pz

-4 -4o -4

F , F , F Aerodynamic forces about body axes x, y, z

Gxo, Gyo, Gzo Components of gravitational vector along

inertial axes X0 , yo , Zo
--4 -4• -,

L px, L py, L Propulsion moments about body axes x, y, z
-,4 -4 -4

Lax L, L Laz Aerodynamic moments about body axes x, y, z

-4 -4 -4

P, Q, R Angular rates of missile about body axes, x, y, z
•-4 .-4 -4e

I x, I y, Iz Moments of inertia about body axes x, y, z

0, 6, • Euler angles

[ C] Transformation matrix between body and inertial

axes
S-4 -4 --4

xo, Yo, Zo Unit vectors defining the inertial axes

x, y, z Unit vectors defining the body axes
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LISTING OF EQUATIONS

X0 F - + F G
px ax xo

m Y'o = [C) F + F + GIpy ay yo (Al)
z' F +rF G

pz az zo

I= I/Ix- px+ L ax- (I -I ) QR]

S= [1I EL +4L -I PR+ I PR] (AZ)
y py ay x z

i= l/I EL + L -I P1Q+ I PQ)z z az y x

{ = - R tan 6 Five Degrees

P = P Six Degrees

6 :Q cos # -Rsin'

1= l/cos e [Q sin + R cos (AM)

T= + sin 6

11 mI nj

[C ) m2 n2

13 M3 n3

ceco sesoco-coso secoc',o+soso

ces Ssosos +coco secoso-soco
(A4)

-se S Ce C c

* ce = cos 6, S = sin 6 etc.
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The equations of motion listed above are those used in the six and

five degree study. These equations are general and can be used for any

missile or projectile which has axial symmetry. The detailed listing

of the computations involved in obtaining the propulsion, aerodynamic

and gravitational forces and moments are not included, but as pointed

out earlier these computations are very lengthy. The transformation

matrix relating the body axes and the inertial axes is obtained by an

Euler angle system. The equations are posed for programming conven-

ience so that the program can switch from six degrees to five degrees

with only minor changes in program logic.

These equations are conventional except for the presence of P

in the last two equations of (A2). For the six degree system P is

equal to P. For the five degree system P is determined by

Pý = -R tan6 (A5)

In addition, for the five degree system 0 = 0 in (A3) and (A4).

The singularity which can occur in the b equation when 0 approaches

900 is avoided by utilizing a "switch over" set of intermediate axes

8 98 90°C .

It should be noted that alternative techniques for obtaining [C] are

often used. A method which seems to be used as often as the Euler

angle method is to integrate the direct'ion cosine derivatives directly by

the equations

1. = R m. - Q n.1 1 1

;n. P n. -R 1. i 1, 2, 3 (A6)1 1 1

;. = Q 1. - P m.1 1 1

This method avoids the evaluation of the trigonometric terms in. [C]

at the expense of the additional differential equations. The experience
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of various Government agencies and the industry with this technique

however is that [C I tends to gradually deviate from orthogonality

(especially for spinning missiles) and accentuates instability. This

problem is avoided by inserting into the program an orthogonality

loop such as that described in Reference 15 which at each step of the

integration forces [C ] back to a condition of orthogonality. Equations

(A6) can be utilized with both five and six degree systems. For five degree

systems P is found from the equation..

P = -Rtan 13/ms (A7)

An interesting observation is that conventional six degree systems such as

that described by Zaroodney which utilize (A6) for finding [ C ] can be

modified to five degrees by simply replacing P with P as noted in

(A6) and defining 1P as in (A7).

The rigid body system of equations most widely used in firing

table computations at BRL is that described by Lieske and McCoy 1 2

and due originally to H. L. Reed. This system is a five degree one

and integrates the direction cosine derivatives but does not employ the

"body axes" as is usually done, i. e., all integrations are done in inertial

space. The method enjoys the advantage of being simple but suffers

the disadvantage of being unconventional. The missile engineer with

the customary education in the aeronautical schools usually prefers to

express the forces and moments in terms of parameters associated

with the "body axes" such as P, Q, R, the angular rates, at, A, the

angle of attack and angle of sideslip and 0 , e , 0, the Euler angles.

This seems especially true for guided missile systems which have

"on board" inertial platforms which in some way or other are "tied"

to the body axes.
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